真实世界的物理以及生物信号,往往隐藏在各种干扰和传感器及电路的失调之中。从巨大的干扰和失调信号中,提取并且放大微弱的物理和生物信号,往往需要巨大动态范围的前端电路,这对信号链的前端电路带了设计挑战和功耗和面积负担。如何充分利用混合集成电路技术,从系统结构上进行创新,从电路设计上进化优化,从而实现更高能效、更高动态范围的前端模拟电路,是实现高精度传感,尤其是高精度双向脑机接口的关键手段。
代表成果一:超高输入阻抗生物电采集前端芯片
(输入阻抗:400 GΩ,0.1%线性输入范围:220mVPP,最大可承受共模电压: 2.8VPP)
[VLSI-2018] “A 400GΩ Input-Impedance, 220mVpp Linear-Input-Range, 2.8Vpp CM-Interference-Tolerant Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition”
[TBioCAS-2019] “A 400 GΩ Input-Impedance Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition with Large Linear-Input-Range and High CM-Interference-Tolerance”
代表成果二:极低噪声有效因子AFE芯片实现心电、脑电的有效感知
(输入等效噪声:1.02µV,电流:499nA,有效噪声因子:1.98)
[TBioCAS-2019] “A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors”
代表成果三:64通道通用神经记录SoC
(单通道噪声:1.16uVrms(0.1-100),功耗:22微瓦)
[TBioCAS-2017] “A 64-channel versatile neural recording soc with activity-dependent data throughput”